
DOI: 10.1201/9781003104278-7 285

7.1  INTRODUCTION

In the previous chapters, we have examined characteristics of static fluids and devel-
oped a coarse model of a mechanical energy balance on a fluid moving in a conduit. 
Beginning in this chapter, we will look at fluid behavior in more detail. In developing 
models for fluid flow, we use mass conservation and Newton’s second law of motion 
to derive relationships between the velocity field and the physical mechanisms driv-
ing and restraining flow. These mass and force balances will be used in later chapters 
to describe many different flows and the heat and mass transport in them.

These models for mass and momentum conservation are extremely useful in 
understanding the behavior of flow, especially in that each term in the equations rep-
resents some physical phenomenon and each equation shows the interaction of those 
phenomena. As we have seen with the diffusion of heat and mass, understanding 
these interactions is important for gaining insight into the behavior of the transport 
phenomena, even when we do not explicitly solve the equation. Thus, a brief intro-
duction to the derivation of these governing equations and a recognition of their phys-
ical meaning is vital to understanding why fluids behave as they do. Studying fluid 
mechanics without this beginning is like studying basic Newtonian physics without 
calculus; we could take that approach, but it is an unnecessary obstacle to learning.

The derivation of these governing equations is facilitated by looking at these flows 
from a particular point of view. We use the approach, termed the Eulerian point of 
view, of observing flow through and forces acting on a small (generally fixed in 
space) control volume to derive the governing equations. Eulerian modeling includes 
not only the forces and flows interacting with a small control volume, but also the 
local accumulation of mass or momentum at a fixed point in space.1 This method is 
different from the Lagrangian point of view, which follows the behavior of a small 
packet of fluid as it moves through space under the influence of various effects.

7.2 C ONSERVATION OF MASS

To model the conservation of mass in a flowing fluid, we begin by examining mass 
moving through an infinitesimal Cartesian control volume, fixed in space, with a 
differential volume, d = dx dy dz. The mass balance requires that the rate of change 
of mass within the control volume be the difference between the rates at which mass 
enters and exits the volume:

massaccumulation or depletion rate = rate of massentering
 (7.1)

raate of mass leaving .
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Consider the two-dimensional control volume in Cartesian coordinates shown in 
Figure 7.1. (We will show the details of the derivations of mass conservation and 
(in the next section) the momentum balance in a two-dimensional velocity field, but 
will also present the three-dimensional versions at the end of the process.) The rate at 
which mass flows across the volume interfaces is a product of the density, the magni-
tude of the velocity normal to the interface, and the area of that interface:

 m V A, (7.2)

where m has the units kg/s. Referring to Figure 7.1, we can rewrite Eq. (7.1) as

m
 m m m m

t x y x dx y dy ,  (7.3)

where the three terms are the mass storage in the volume, the mass flow rate in, and 
the mass flow rate out. Alternately, we can write this mass balance in terms of the 
change in mass flow rate across the volume in each direction:

m
m mx x dx m my y dy .

t mass mass rate mass rate  (7.4)
stored off change of change

in x in y

FIGURE 7.1 Mass flow rates and storage in a two-dimensional Cartesian control volume.
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The fluid velocity is a vector field, which comprises three components:

V u ˆ ˆi v j w k̂  (7.5)

in Cartesian coordinates and, in cylindrical coordinates,

V ur vˆ ˆ w ẑ.  (7.6)

Using the Cartesian definition of the mass flow rates across the surfaces at x and y
and of the velocity vector in Eqs. (7.2) and (7.5), we get

m ux x A ux xdydz and .m vy y A vy ydxdz  (7.7)

(We have assumed the control volume has a depth dz into the page.) A Taylor series 
approximation (truncated to two terms) can be used to obtain estimates of the mass 
flow rates in both directions in close vicinity of positions x and y:

m ux dx x dx A mx dx yand dy v Ay dy x dy

u v
m ux dx dx dydz and m v

x y dy dy
x y

dxdz.  (7.8)
x y

y

The mass storage term can be written as

m
d dxdydz .  (7.9)

t t t

Combining relationships (7.7)–(7.9) in the mass flow balance (7.4) produces

u v
dxdydz dx dydz dy dxdz.

t x y
x y

Dividing by the differential volume gives

u v
0,  (7.10)

t x y

or in three dimensions

u v w
0.  (7.11)

t x y z
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The first term in Eqs. (7.10) and (7.11) is the local storage of mass in a constant 
volume. The other terms are the change in the mass fluxes ( u, v, w) across the 
control volume. In cylindrical coordinates, where the velocity field is represented by 
Eq. (7.6), a similar process gets

1 1r u v w
 0.  (7.12)

t r r r z

If the density is constant and uniform, then Eq. (7.11) is reduced to

u v w
 0  (7.13)

x y z

in Cartesian coordinates and, in cylindrical coordinates,

1 1ru v w
 0.  (7.14)

r r r z

This approximation holds true in incompressible fluids (such as liquids), where den-
sity is at most a weak function of pressure, and in gases with small pressure differ-
ences. These mass balance equations, Eqs. (7.11) and (7.12), are known as the mass 
conservation equation or the continuity equation. The first name is obvious from 
our derivation; the second is because this equation represents a constraint on the 
momentum equations (in the next section), which keeps the fluid continuous with no 
gaps or overlaps.

To illustrate the relationship between the two mass flux terms in Eq. (7.10), 
Figure 7.2 shows a volume with velocity in from the left side (u1) and out the right 
(u2), with some flow through the top surface at velocity v2 and none through the bot-
tom (v1 = 0). If u1 > u2, then the flow decelerates in x and ∂u/∂x < 0. From Eq. (7.13) 
with ∂w/∂z = 0, we see that ∂v/∂y > 0 or v2 > v1. In this case, the flow enters from the 
left and splits into two different directions; mass leaving out the top of the volume 
(v2 > 0) slows the horizontal velocity. In the opposite case, if u1 < u2 (accelerating 

FIGURE 7.2 Control volume illustrating conservation of mass in two dimensions.
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flow), then ∂u/∂x > 0 and ∂v/∂y < 0, so v2 < v1. To accomplish this increased flow 
rate in the x direction, mass must be entrained into the volume through the top with 
a downward velocity, v2 < 0.

Beginning with Eq. (7.13) for two-dimensional steady flow (w = 0), we can define 
the streamfunction, (x, y), in Cartesian coordinates as

u and .v  (7.15)
y x

This quantity is defined thus to satisfy the continuity equation identically:

u v 2 2

0.
x y x y y x x y x y x y y x

The total differential of (x,y) is

d dx dy v dx u dy.  (7.16)
x y

We also define a streamline as a line in a velocity field everywhere tangent to the 
flow, as shown in the example flow field in Figure 7.3 (a). This tangency condition 
means that velocity has no normal component on a streamline and so streamlines are 
impermeable. The slope of the streamline can be defined as

dy v
,  (7.17)

dx u

where the rise over run is determined by the ratio of velocity components. Eqs. (7.16) 
and (7.17) combined gives

v dx u dy d 0,

which shows that the value of the streamfunction is uniform along a streamline.
The fact that no fluid crosses a streamline (a line of constant ) is useful for dis-

playing the distribution of the volume flow rate, Q =  V A, in a flow field. Any two 
streamlines form a stream tube, and we find that the flow rate is the same across any 
line drawn from one streamline to the other. This result is illustrated in Figure 7.3 (b) 
by calculating Q across the two lines, A and B. For line A, the only normal velocity 
component is u, so

y2 y

Q uA

2

dy dy
y y y 2 1,

1 1

For line B, with no horizontal component of velocity,

x1 x2 x2

Q vB dx v dx dx .
x x 2 1

2 x1 x1
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FIGURE 7.3 (a) Streamlines (lines of constant ) in a flow field, showing tangent velocity 
vectors. The surface also acts as a streamline, as no flow passes through it. (b) Flow through 
a stream tube between two streamlines ( 1 and 2).

FIGURE 7.4 Streamlines in a flow field moving from left to right. The flow first accelerates 
as streamlines converge, then decelerates as they diverge.
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We see that QA = QB, so the volume flow rate does not change along the stream 
tube constrained by 1 and 2. The value of the volume flow rate, Q, is also the dif-
ference of the streamfunction values for the two streamlines.

Figure 7.4 shows a family of streamlines representing a flow field moving left to 
right. Moving from the left, the streamlines converge then diverge. As they move 
closer together, the cross sectional areas of the stream tubes decrease, causing an 
increase in the velocities along the tubes. When they then diverge farther down-
stream, those areas increase and the flow decelerates.

7.3 M OMENTUM BALANCE: THE NAVIER–STOKES EQUATIONS

In this section, we apply Newton’s second law of motion to a fluid control volume 
to derive a momentum balance equation. This balance and the continuity equation 
(7.13) form a basis for a description of the mechanisms controlling fluid motion.

In most early physics courses, Newton’s second law is written as

F ma,

where the mass is constant and a is the acceleration vector. A more general version 
is that the sum of the forces causes a change in the momentum vector, , with time:

d
F .  (7.18)

dt

We can write the momentum field as

x y, , t mV ,

and its total derivative in two-dimensional Cartesian coordinates as

mV mV mV
d dt dx dy.  (7.19)

t x y

The total change in momentum with time is then

d mV dt mV dx mV dy

dt t dt x dt y dt

mV mV
(7.20)

mV
u ,

t x y

where u = dx/dt and v = dy/dt. This form of the total time derivative in a flow field 
is known as the substantial, or material, derivative, which is usually written for any 
transported quantity as


